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Received 14 December 2005; received in revised form 23 July 2006
Available online 17 October 2006
Abstract

In this paper, we address the fundamental problem of how to arrange fluid flow and solid material for minimal thermal resistance. A
heat-generating board is cooled by a stack of porous layers through which a coolant flows. The stream is generated by a fixed pressure
drop. The problem consists in determining the optimal porosity and material of each layer for minimizing the hot spot temperature (ther-
mal resistance), under global mass and cost constraints. We combine a genetic algorithms (GA) toolbox with a finite volume program to
optimize the design. The shape and structure of the system emerge from the global optimization, under global constraints. The optimal
material to use in each layer is determined by the GA – not assumed – and is chosen from a database of four materials. The GA elim-
inates layers that do not contribute to the overall performance and therefore optimizes the size of the stacking. The results indicate that
more solid material should be used closer to the hot plate (non-uniform distribution). Several nearly optimal configurations are found in
the design space.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The cooling of every heat-generating device (e.g., engine,
electronics) is essential for maintaining its temperature in
the acceptable range where the integrity and performance
of the device are not jeopardized. The designer of a cooling
system has to provide ‘‘thermal pathways” by which the
heat current can be discharged in an external reservoir
(e.g., ambient air) either by conduction, convection or radi-
ation. The removal of heat by a coolant that sweeps or
bathes a warm surface is one of the most encountered cool-
ing strategies in engineering systems. Extended surfaces, or
fins, are then used to increase the surface of exchange and
maximize the heat transfer rate. Designing a fin system is
equivalent to distributing a high thermal conductivity
material within the flow or equivalently, distributing the
flow within the high thermal conductivity material.
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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In this paper, we examine the opportunities for optimiz-
ing the performance of a cooling system made of a stack of
porous layers, like the one shown in Fig. 1a. The coolant
circulates in the network of pores and transports the heat
outside of the system. The solid phase of the porous media
is made of high thermal conductivity material in order to
increase the surface of exchange and minimize the global
thermal resistance of the stacking. Porous media, such as
metallic foams and sponges, are used for improving the
thermal performance of various systems [1–6]. One of the
current challenges is the characterization of the porous
material properties, such as the equivalent thermal conduc-
tivity and permeability [7–10].

Our approach is in line with the constructal point of
view: the internal structure of the cooling system has to
emerge as a result of the optimization, under global con-
straints [11]. Previous work on optimized internal struc-
tures in heat transfer systems led to the idea of ‘designed
porous media’ [12,13]. A network of pores can be opti-
mized for maximal heat removal or minimal pumping
power requirement [14–19].
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Fig. 1. Physical representation of (a) a stacking of porous layers and (b) the porous structure.

Nomenclature

Be Bejan number
cp heat capacity, J kg�1 K�1

c cost per unit of mass, $ kg�1

C cost per unit of length, $ m�1

D diameter of the pipes
k thermal conductivity, W m�1 K�1

K permeability, m2

L length, m
H height, m
M0 mass per unit of length, kg m�1

N number of layers in the y-direction
P pressure, Pa
q00 heat flux, W m�2

S number of cells in the x-direction
T temperature, K
u velocity, m s�1

x,y Cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2 s�1

/ porosity
c penalty coefficient
l viscosity, kg m�1 s�1

q density, kg m�3

Subscripts

f fluid
j layer index
s solid
0 constraint value

Superscript

� dimensionless quantity
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Table 1
Solid-to-air density and thermal conductivity ratios at 300 K [33] of four
materials, and relative price per unit of mass [34]

Material Density, ~q Conductivity, ~k Price, ~c

Aluminum (Al) 2327.5 9011.4 12.8
Copper (Cu) 7691.6 15247.2 18.9
Iron (Fe) 6776.3 3049.4 1
Brass (Br) 7663.2 3448.7 13
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Other ‘fluid–solid’ structures used for cooling purposes
have been optimized recently [20–25]. An optimization pro-
cedure for minimizing the thermal resistance of stacked
micro-channel heat sink was proposed in Refs. [26–28].
The principal variables took into account were the fin
aspect ratio, thickness, length of the heat sink and number
of layers.

In this paper, we use genetic algorithms for optimizing
the structure of a layered porous medium with a thermal
objective in mind. Genetic algorithms have been used suc-
cessfully by several authors for heat transfer problems
[29,30]. An innovative aspect of this paper is that we
optimize not only the porosity, but also the material compo-
sition of each layer for minimizing the temperature of a heat-
generating plate, under global mass and cost constraints.

2. Mathematical model

In this section, we present a simple model for evaluating
the heat transfer performance of a stack of porous layers
used to remove heat from a warm plate as shown in
Fig. 1a. The heat is carried through the solid part of the
porous media, and is eventually dissipated in the fluid flow
which transports the heat outside of the system. The model
that we present in this section can also be used as a first
approximation for representing a heat sink or a cold plate.
One can vary the size, porosity, and materials within the
cooling system for improving the performance.

On the bottom surface, we consider that a uniform heat
flux q00 is applied. For example, heat-generating electronic
components could be attached to that surface. Our objec-
tive is to cool down the heat-generating surface, i.e., to
minimize the hot spot temperature Tmax. This is equivalent
to minimizing the cooling system thermal resistance. For
simplicity, we assume that the porous layers are made of
bundles of small pores or tubes that are parallel to the flow
(Fig. 1b). Therefore, the porosity of each layer is constant
within the layer. This means that at a given position y, the
ratios of the volume occupied by the solid and fluid phases
are the same at every position x. The approach presented in
this paper could be extended to other types of porous
structures.

The fluid is driven trough the porous medium by a pres-
sure difference DP between the inlet and outlet. For exam-
ple, a fan could be positioned in front of the heat sink. One
can use Darcy law for determining the volume-averaged
velocity u in the layer j [31],

uj ¼
KjDP
lL

ð1Þ

where Kj is the permeability of the layer j, and L is the
length of the system. The permeability can be related to
the porosity with the help of univocal K(/)-relations that
depend on the internal structure of the porous medium
[7–10]. In this paper, we rely on the relation Kj(/j) = /j

D2/32, appropriate for the chosen porous structure of
Fig. 1b.
The geometry presented in Fig. 1b is such that the fluid
velocity component in the y-direction is zero. Assuming
that the transport of energy in the x-direction is dominated
by convection, we can neglect the x-direction diffusion term
in the equation of energy conservation, and obtain [31]:

ðqcpÞf
oðujT Þ

ox
¼ o

oy
kj

oT
oy

� �
ð2Þ

where kj is the effective thermal conductivity of the porous
structure in the y-direction and in the layer j. In the appli-
cation considered here, the thermal conductivity of the
solid phase is much larger than the one of the fluid. For
example, we reported in Table 1 the solid-to-air conductiv-
ity ratios (at 300 K) of four materials. In each case, the
ratios are much larger than one. Therefore, the value of
kj can be approximated by ks(1 – /)/(1 + /) [32], which
corresponds to the thermal conductivity in the direction
perpendicular to the pores (y-direction). In other words,
the tubes could be considered as inserts of negligible ther-
mal conductivity [32]. Combining Eqs. (1) and (2), the
energy equation becomes, in a dimensionless form,

Be
oðeK eT Þ

o~x
¼ o

o~y
~k

1� /
1þ /

� �
oeT
o~y

 !
ð3Þ

where

~x; ~y ¼ x; y
L
eT ¼ T � T 0

q00L=kf

eK ¼ K

L2
ð4Þ

Be ¼ L2DP
afl

~k ¼ ks

kf

ð5Þ

The Bejan number, Be, is a parameter that gives a measure
of the pumping power available for driving the fluid
through the porous layers. As indicated in Fig. 1a, the
boundary condition at the inlet is eT ¼ 0. The upper wall
is assumed to be adiabatic, hence oeT =o~y ¼ 0. At the bot-
tom surface where the heat flux is applied, we have the
following dimensionless boundary condition:

~k
1� /
1þ /

� �
oeT
o~y
¼ 1 ð6Þ

Finally, the permeability–porosity relation that we intro-
duced in the beginning of the present section becomes, in
a dimensionless form,

eK ¼ K

L2
¼ 1

32
/

D
L

� �2

¼ 1

32
/eD2 ð7Þ
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The objective function to minimize is the hot spot tem-
perature, eT max, which is located at ~x ¼ 1, ~y ¼ 0. The hot
spot is the weakest site from the thermal standpoint. To
calculate the hot spot temperature, Eq. (3) needs to be
solved, with the appropriate boundary conditions, andeK ð/Þ-relation. The degrees of freedom (DOFs) are the
porosity of each layers, /j, and the solid material used in
each layer. The number of layers (N), the Bejan number
(Be), and the size of the porous stacking ( eH ), are constant
parameters that must be specified for the problem to be
solved. The diameter of the pores (D) is non-designable,
and therefore it is considered constant in the calculation
of the permeability K. Larger diameters would be better
as it would increase K, and the mass flow rate. However,
if D becomes too large, the thermal equilibrium assumption
(Tsolid–Tliquid) would fail, and a two-temperature model
would need to be employed.

To recognize that in every application, space, size and
materials are expensive and limited, we pursue the minimi-
zation of eT max, under global mass and cost constraints. The
density of the air is much smaller than the one of the solid
phase materials, Table 1, and therefore, only the mass of
the solid phase needs to be taken into account when evalu-
ating the global mass of the stacking. In other words, the
actual mass eM of the heat sink is the summation of the
mass of the solid phase of each porous layer. The value
of eM must be equal or smaller than a specified value eM 0

that we do not want to exceed,

eM ¼ M 0

qfL
2
¼
XN

j¼1

~qjð1� /jÞD~yj 6
eM 0 ð8Þ

where D~yj is the thickness of the jth layer. It is also possible
to consider a total cost constraint, which is the summation
of the price associated with each layer,

eC ¼XN

j¼1

~qj~cjð1� /jÞD~yj 6
eC0 ð9Þ

where ~cj is the relative price per unit of mass. The values of
~cj for the four materials considered in this study are re-
ported in Table 1. In Eq. (9), eC0 is the threshold value of
the total price that we do not want to exceed.

For respecting the definition of the porosity, the values
of /j have to be in the interval [0, 1].
Table 2
Mesh independence study for an aluminum heat sink, with eH ¼ 1 and / = 0.

S Be = 1011

eT max eT max;i � eT max;iþ1eT max;iþ1

�����
�����

15 7.2797 � 10�4 –
30 7.3990 � 10�4 1.6%
60 7.4554 � 10�4 0.76%

120
240
480
In summary, the purpose of this work is first to mini-
mize the hot spot temperature, eT max, while respecting the
mass and cost constraints, Eqs. (8) and (9), by varying
the porosity and solid material of each layer composing
the cooling device. When it is impossible to respect the
mass and cost constraints with the specified number of lay-
ers and height of the system, the optimization process will
tend to eliminate some layers by attributing them a poros-
ity equal to one (void layer). The height of the system, eH ,
can thus be indirectly optimized in spite of the fact that it is
a constant parameter in the problem, as mentioned before.
Effects of this indirect optimization are shown in a further
section.

3. Numerical modeling

The dimensionless energy equation, Eq. (3), has been
discretized based on the finite volume approach [35]. The
domain is meshed using S cells in the x-direction, that is
S cells per unit of length. In the y-direction, we used the
same density of cells, i.e., that we have at least eH S nodes.
The number N of porous layers is specified and therefore,
each porous layer is represented by a certain number of
computational layers of cells with the same properties
(porosity, material). The value of S is chosen large enough
so that further grid doubling leads to a hot spot tempera-
ture variation smaller than 1%. The cells are quadrilateral
and are uniformly distributed in the domain. In order to
have nodes directly on the boundary (where Tmax lies)
and keep a uniformly distributed grid, the thicknesses of
the top and bottom layers of cells are half the one of the
other layers [35]. For simplicity, we used uniform meshes
as the computational times were not too long.

For the discretization of the left-hand side term of Eq.
(3), an upwind scheme has been used: we approximated
the temperature at the faces of the control volumes by
the upwind temperature. This allows us to overcome the
difficulty associated with the unspecified boundary condi-
tion at the outlet of the system, ~x ¼ 1. The temperature dis-
tribution at the outlet is then delivered by the numerical
model. For the discretization of the right-hand side term
of Eq. (3), we use a harmonic mean to evaluate the effective
thermal conductivity at the boundary of the control vol-
umes [35].
5

Be = 1015

eT max eT max;i � eT max;iþ1eT max;iþ1

�����
�����

1.6634 � 10�6 –
3.1369 � 10�6 47%
4.5770 � 10�6 31%
5.0670 � 10�6 9.7%
5.1703 � 10�6 2%
5.1970 � 10�6 0.51%



Table 3
Mesh independence study for an aluminum heat sink, with eH ¼ 1 and / = 0.9

S Be = 1011 Be = 1015

eT max eT max;i � eT max;iþ1eT max;iþ1

�����
�����

eT max eT max;i � eT max;iþ1eT max;iþ1

�����
�����

15 9.4958 � 10�4 – 9.5673 � 10�7 –
30 9.6445 � 10�4 1.5% 1.9979 � 10�6 52%
60 9.7112 � 10�4 0.69% 3.9278 � 10�6 49%

120 6.8101 � 10�6 42%
240 9.0212 � 10�6 25%
480 9.6000 � 10�6 6.0%
960 9.7264 � 10�6 1.3%

1920 9.7581 � 10�6 0.32%

468 P. Wildi-Tremblay, L. Gosselin / International Journal of Heat and Mass Transfer 50 (2007) 464–478
The resulting system of algebraic equations is then
solved line-by-line with a tridiagonal solver. No iterative
procedure is required due to the linearity of Eq. (3) and
the known velocity profile. In other words, only one sweep
in the x-direction is required. Therefore, for calculating the
hot spot temperature for a given set of parameters, DOFs
and constraints, one needs to solve S times a eH S � eH S tri-
diagonal matrix system.

In Table 2, we report an example of a mesh indepen-
dence study for a typical case. We began with a given value
Table 4
Parameters of the validation problem (thermal boundary layer limit)

Parameters

Material Aluminum
Fluid Air
Number of layers (N) 1
Height of the system ( eH ) 5
Porosity (/) 0.5
Pores diameter (eD) 0.001

1/2 1/2

max K
~

Be

k
~

1

1

T
~

1
φ−

+φ

0.8

0.85

0.9

0.95

1

1110

Fig. 2. Value of the left-hand side term of Eq
for S, the number of cells in the x-direction. We kept the
number of cells per unit length constant, and therefore
we set the number of cells in the y-direction to S eH . We per-
formed the numerical simulation and reported the value of
the hot spot temperature in Table 2. Then we doubled the
number of cells per unit length, we recalculated eT max and
we determined the relative difference in terms of eT max com-
pared with the previous ‘‘coarser” mesh. We continued to
refine the mesh until further grid doubling resulted in rela-
tive differences in eT max smaller than 1%. The study showed
that 60 cells per unit length is an adequate choice for values
of Be of up to 1013. When Be is larger, the mesh needs to be
denser. For Be = 1014, the recommended number of cells
per unit length is 240 and we need as many as 480 nodes
per unit of length when Be = 1015.

It is important to note that the required number of cells
per unit of length for mesh independence varies with the
porosity. We reported in Table 3 the mesh independence
study for / = 0.9. We discovered that the required number
of cells becomes larger when / increased. When / was set
to 0.9, the required number of cells per unit of length were
résultats numériques
droite de tendance, y = 0.88792

1210 1310 1410

Numerical results 
Average curve, y = 0.888 

Be

. (11) as a function of the Bejan number.
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60, 120, 240, 480 and 1920 for Bejan numbers of 1011, 1012,
1013, 1014 and 1015, respectively. Therefore, in the sections
where the porosity distribution through the layers is opti-
mized, the finest mesh must be used as / can take any val-
ues between 0 and 1.

The code has been validated in the thermal boundary
layer limit, for which an analytical solution exists when
only one material and porosity are considered [31]. The
height eH of the stacking has been increased until the
dimensionless temperature at the position ~x ¼ 1 and
~y ¼ eH (upper right corner) reaches a value smaller than
1% of eT max. In that case, we can consider that the flow at
that position has not felt the presence of the wall, which sit-
uation corresponds to the thermal boundary layer limit.
The value found for eH as well as the other parameters used
for this validation problem are summarized in Table 4.

Based on the results presented in Ref. [31], we expect the
following relation for the temperature distribution of the
warm plate in the thermal boundary layer limit:

T pðxÞ ¼
q00x

0:886kðPexÞ1=2
þ T1 ð10Þ

where Pex = U1x/a. In a dimensionless form, and recog-
nizing that eT max is located at ~x ¼ 1, Eq. (10) can be rewrit-
ten as

1eT max

1þ /
1� /

� �1=2

Be�1=2 eK�1=2~k1=2 ¼ 0:886 ð11Þ

We calculated the hot spot temperature with our code for
several values of Be between 1011 and 1014, and we plotted
the value of the left-hand side term of Eq. (11). The result
of this investigation is reported in Fig. 2. The average value
of the left-hand side term of Eq. (11) obtained with our
code was 0.888. The agreement between our results and
the dimensionless correlation, Eq. (11), is within 0.25%
for the values of Be investigated in this paper.
Crossover

Mutation

New population 

Elitist

Convergence ? No

Yes

Optimal design 

Fig. 3. Schematic of the GA procedure.
4. Optimization procedure

In the preceding sections, we presented how to evaluate
numerically the objective function (hot spot temperature)
and constraints (mass, cost) for a given set of degrees of
freedom (porosity and material of each layer). The finite
volume code has been coupled to an optimization toolbox
relying on genetic algorithms (GA) [36]. The GA optimiza-
tion toolbox is used for determining the optimal configura-
tion of the cooling system in the design space. Due to the
potentially large number of degrees of freedom, and to
the need of optimally selecting the materials, genetic algo-
rithms emerge as an appealing optimization approach com-
pared with deterministic gradient-like methods. In this
section, only a brief review of the GA is presented. Detailed
description of the GA could be found elsewhere [36].

Each design is characterized by a set of 2N parameters.
N genes characterize the porosity of each of the N layers,
and another set of N genes determines the material of each
layer. The porosity is free to vary between 0 and 1. The pre-
cision that we seek for the optimal porosity is determined
by the number of bits that are used to express the porosity
of a layer. For example, when the porosity of a layer is
encoded with m bits, the precision is 1/(2m). In this paper,
we used 7 bits, which corresponds to a precision in terms of
porosity of approximately 8 � 10�3. In practice, the preci-
sion that we seek for the porosity is limited by the precision
that we can achieve when building the layer.

The material is represented by an integer that is free to
vary between 1 and 4, the number of potential materials,
Table 1. Therefore, 2 bits are needed for expressing the
material of a layer. In the end, a chromosome (i.e., a
design) is made of the assembly of all the bits, and is thus
9N-bit long. A chromosome representation is shown in top
of Fig. 4. With as few as 8 layers (i.e., N = 8), there are
272 = 1021 possible designs. The optimization strategy
should be able to identify nearly optimal designs by evalu-
ating only a small fraction of the possible designs.

The GA optimization procedure is described in Fig. 3.
An initial population of 30 designs (i.e., chromosomes) is



470 P. Wildi-Tremblay, L. Gosselin / International Journal of Heat and Mass Transfer 50 (2007) 464–478
generated randomly. When the population has been gener-
ated, the GA decodes the chromosome of each individual
to obtain its phenotypic values, which correspond to the
decision variable values (i.e., porosities and materials).
Having decoded the chromosome representation into the
decision variable domain, the fitness of each individual
(eT max) can be evaluated with the numerical procedure
described in Section 3. Note that the complete GA proce-
dure, except for the fitness evaluation, is always operated
on the encoded chromosome.

The next step is the selection of the individuals that will
have the chance to reproduce. In this paper, we used a sto-
chastic universal sampling strategy (SUS) for which a
detailed description is found in Ref. [36]. Since the selection
is a probabilistic process, the fitter individuals will have
more chances to get selected, although unfit ones could also
be chosen. To take into account the mass and cost con-
straints, the objective function (hot spot temperature,eT maxÞ is penalized in the following way:
Crossover

Mutation

0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0

1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0

C

1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1

1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0

0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0

Parent 1 

Parent 2 

Offspring 1 

Offspring 2 

Offspring 1 (no mutation occured)

Mutated Offspring 2 

Porosity of layer j = 1 

Porosity of layer j = 2 

material of lay

ma

Fig. 4. Example of crossover and m
F ¼
eT max

ðBeeD2Þ�1=2
þ cM MAX

eM � eM 0eM 0

 !
; 0

" #

þ cCMAX
eC � eC0eC0

 !
; 0

" #
ð12Þ
where cM and cC are constants used to penalize the objec-
tive function when the mass and cost constraints are not re-
spected, i.e., when ð eM � eM 0Þ > 0 or ðeC � eC0Þ > 0. When
the constraints are respected, we have ð eM � eM 0Þ < 0 and
ðeC � eC0Þ < 0, and the penalties vanish. Therefore, the
GA procedure will tend to eliminate the designs that do
not respect the constraints. As we can see in Eq. (12), the
hot spot temperature has been normalized with

BeeD� ��1=2

to achieve values around 1. The factor

BeeD� ��1=2

is the scale of the hot spot temperature in the

thermal boundary layer limit [31]. The penalty associated
1 0

1 0

rossover point 

0 1

0 1

1 0

0 1

Cu, φ  = 0.8 

Cu, φ  = 0.6 

Al, φ  = 0.7 

Al, φ  = 0.4 

Al, φ  = 0.7 

Al, φ  = 0.4 

Cu, φ  = 0.7 

Br, φ  = 0.4 

Al, φ  = 0.8 

Fe, φ  = 0.6 

Cu, φ  = 0.8 

Fe, φ  = 0.6 

er j = 1 

terial of layer j = 2 

utation for a two-layer system.
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with the cost and mass constraints is also normalized to be
in the vicinity of 1. This normalization of the hot spot tem-
perature and constraints facilitates the choice of the pen-
alty parameters cM and cC. These parameters have to be
large enough for the program to eliminate a design that
violates the constraints. On the other hands, too large a va-
lue of cM or cC will prevent the search of designs close to
the constraint boundaries in the design space. The results
reported in this paper were obtained with cM and cC set
to 1.

Once the individuals have been selected, new individuals
or designs are produced by the GA with a crossover oper-
ator. Like its counterpart in nature, crossover produces
new individuals that receive information from both par-
ents’ genetic material. A simple crossover example with
one crossover point is illustrated in Fig. 4. One crossover
point is randomly selected to separate the chromosome of
each parent into two segments of bits. The first segment
of a parent is combined with the second segment of the
other parent, and vice versa, in order to produce two off-
springs. In this paper, we used three crossover points in
such a way that each parent’s chromosome is divided in
four segments of bits. The positions of the crossover points
are randomly chosen with a preset probability of 0.7.

Mutation is then randomly applied on chromosomes
with low probability. The mutation modifies bits in the
chromosome, resulting in a new design as shown in
Fig. 4. We noted that when the mutation probability was
too low (0.001), the GA tended to converge to local
optima. For the results obtained in this paper, the proba-
bility was set to 0.04.

The last step of the GA procedure is the reinsertion of
the new individuals in the population. In this paper, an elit-
ist strategy was adopted. This means that the fittest designs
of an initial population are ensured to propagate through
the next generation. When the mutation process is com-
pleted, the offsprings that have just been created will
replace the less fit individuals of the initial population.
We set the number of fittest designs that are ensured to
propagate to 3 (10% of the initial population). At that
moment in the algorithm, the creation of the new popula-
tion of designs is completed. This population becomes
the initial population for the next generation and so on
until the convergence criterion is reached (see Fig. 3).
Because the GA is a stochastic search method, it is difficult
to set a convergence criterion. In this paper, we terminate
the GA after 200 consecutive generations without improve-
ment of the best design, i.e., without decrease of eT max.

5. Effect of the stacking height for a given material

In this section, we examine the effect of the size of the
stacking by varying its height, eH . The study is performed
without constraints (cM = cC = 0) and for a specified mate-
rial (aluminum). For several values of eH , the thermal resis-
tance (i.e, eT max) of a four-layer system was minimized by
the GA. In this case, the porosities are the only DOFs con-
sidered during the optimization process as the material is
imposed. In Fig. 5, we reported the minimized hot spot
temperature as a function of eH for three different values
of the Bejan number. It is important to understand that
each point in Fig. 5 corresponds to the result of an optimi-
zation procedure. In fact, the procedure described in Sec-
tion 4 has been conducted over a certain number of
generations to obtain the value of each point (eT max ;m).
The subscript m refers to the minimized hot spot tempera-
ture. Fig. 5 reveals that for a given value of Be, eT max ;m

decreases with eH and eventually reaches a plateau. In other
words, it makes no sense to increase indefinitely eH as it
would result in larger system with similar thermal resis-
tance. Therefore, one can define an ‘‘efficient height” of
the stacking such that increasing eH further than that value
will not yield a significant hot spot temperature decrease.
Physically, the efficient height scales as the thickness of
the thermal boundary layer, dT. When H > dT, the portion
of the system outside of the thermal boundary layer does
not contribute to the heat removal. In Fig. 5, we read effi-
cient heights around 3, 1.1 and 0.3 for Be = 1011, Be = 1012

and Be = 1013, respectively. The reduction of the efficient
height as the Bejan number increases is due to the decrease
of the thermal boundary layer growing on the warm plate.
Thereby, less material is needed (conduction effects are less
important) to cool down the hot plate.
6. Porosity distribution for a given material

Fig. 6 illustrates the optimal porosity assigned to each
layer composing the system studied in Section 5 (N = 4),
with eH ¼ 0:5. For low Bejan numbers, the GA assigned
higher porosities. That was a predictable result since a
higher Bejan number means a higher velocity of the fluid
through the porous structure. Because convection effects
are less important for low Bejan numbers, the surface area
should be greater to compensate. As shown in Fig. 6, layers
are more porous far from the heat-generating wall. This is
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Fig. 6. Porosity distribution for a given material for Be = 1011, 1012 and
1013.
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in accordance with Ref. [37,38], where a fin profile under
global mass constraint is optimized. The optimal fin is
thicker close to its base, and gets thinner as we move away
from the base. In other words, it is better to put more solid
material close to the wall.

The porosity distribution delivered by the GA when
Be = 1013 is such that the first three layers could be
replaced by only one layer of porosity / = 0.417. We can
explain this result by looking at Eq. (11). When eH ¼ 0:5
and Be = 1013, the heat sink works in the thermal bound-
ary layer limit, as we can see in Fig. 5. Derivating eT max with
respect to / in Eq. (11), and equaling to 0, we obtain a
value of 0.414 for the optimal porosity in the thermal
boundary layer limit. In view of the finite precision consid-
ered for the optimization of the porosity (7 bits), the theo-
retical and numerical results are in very good agreement.
Because the heat sink does not work in the thermal bound-
ary layer limit when Be = 1011 and 1012, the GA did not
assign a constant porosity for these two cases as we can
see in Fig. 6.
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7. Optimal designs without constraint

In the last two sections, a material composition for the
layers was imposed before we started the GA. Therefore,
the designs generated by optimization were optimal only
relative to the imposed material. If we want to generate fit-
ter designs, we must let the GA attributing by itself the
porosity-material combinations leading to the minimal
hot spot temperature.

In this section, we considered a 10-layer system, giving
more flexibility (freedom to morph) to the algorithm. For
this reason, we performed four different simulations for
each set of parameters in order to observe the repeatability
of the results. In Tables 5–7, the optimal designs that were
generated for three different Bejan numbers and their char-
acteristics are presented. For this set of simulations, the
required number of generations to converge varied between



Table 6
Optimization without constraints for Be = 1012, eH ¼ 1 and eD ¼ 0:001

Configuration of layer j  (material and porosity) Required
number of 

generations 1 2 3 4 5 6 7 8 9 10 

      

Simulation
# 1 744 Cu

0.433
Cu

0.441
Cu

0.441
Cu

0.449
Cu

0.457
Cu

0.472
Cu

0.512
Cu

0.559
Cu

0.661
Cu

0.835   3652.9 68309 1.2620 

Simulation
# 2 936 Cu

0.433
Cu

0.433
Cu

0.441
Cu

0.449
Cu

0.466
Cu

0.480
Cu

0.512
Cu

0.559
Cu

0.654
Cu

0.819 3664.6 68528 1.2619 

Simulation
# 3 1522 Cu

0.433
Cu

0.433
Cu

0.441
Cu

0.449
Cu

0.457
Cu

0.480
Cu

0.504
Cu

0.567
Cu

0.654
Cu

0.827 3664.9 68533 1.2619 

Simulation
# 4 1056 Cu

0.433
Cu

0.433
Cu

0.441
Cu

0.449
Cu

0.465
Cu

0.480
Cu

0.512
Cu

0.551
Cu

0.654
Cu

0.827 3664.9 68533 1.2619 

mmax,T
~

C
~

M
~

410×

Table 7
Optimization without constraints for Be = 1013, eH ¼ 1 and eD ¼ 0:001

Configuration of layer j  (material and porosity) Required
number of 

generations 1 2 3 4 5 6 7 8 9 10 

      

Simulation
# 1 616 Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.413
Cu

0.417
Cu

0.417
Cu

0.410
Cu

0.449
Al

0.236   4197.6 76782 3.9403 

Simulation
# 2 765 Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.441
Cu

0.378
Cu

0.606 4351 81363 3.9403 

Simulation
# 3 826 Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.402
Cu

0.480 4446.2 83145 3.9403 

Simulation
# 4 677 Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.417
Cu

0.394
Cu

0.394
Cu

0.276 4625.4 86495 3.9403 

mmax,T
~

C
~

M
~

510×
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616 and 1522 generations. Since the GA is a stochastic
search method, the convergence speed depends on the
way it explores the designs space.

As we can see, copper was assigned to all the layers.
Because no mass and cost constraints were imposed, it is
no surprise that the material with the highest thermal con-
ductivity has been chosen, even if it is expensive and heavy
(see Table 1). Moreover, we note that the repeatability of
the results is excellent; the stacking configurations are
slightly different but they all lead to similar cooling perfor-
mances (values of eT max ;m) for a given value of Be. The hot
spot temperature decreases as the Bejan number (pumping
power) increases. We also observe that the porosity distri-
butions behave like in Section 6; layers become more por-
ous as we move back from the hot plate and are also more
porous for smaller values of Be.

When Be = 1013, Table 7, the four designs that we
obtained are exactly equivalent in terms of cooling perfor-
mance, but have quite different masses and costs. In Sec-
tion 5, we introduced the concept of ‘‘efficient height” of
the stacking and we showed that increasing eH further than
that value would not yield a significant hot spot tempera-
ture decrease. When eH ¼ 1 and Be = 1013, the stacking is
clearly oversized (see Fig. 5) and thus some porous layers
are outside of the thermal boundary layer. These porous
layers do not contribute to the removal of heat from the
hot plate, but of course increase the global mass and cost
of the system. In Table 7, we observe that the configura-
tions of the 8th, 9th and 10th layers are somewhat different
for the four simulations, which does not yield different val-
ues of eT max ;m. The layers located inside the thermal bound-
ary layer have the porosity / = 0.417, like the ones
obtained in Section 6.

8. Mass and cost constrained optimal stacking

8.1. Mass constraint

In the previous section, the porous structure has been
optimized without any mass or cost constraints. In other
words, no requirement was formulated for the final mass
of the system which may result in oversized system. In this
section, we performed the optimization of the layered
structure for Be = 1011 under a global mass constraint.
The penalty coefficient cM in Eq. (12) has been set to 1.
We considered a critical mass value corresponding to
25% of the average mass of the optimized designs found
in Section 5.3 (i.e., eM 0 ¼ 469:07). Four simulations were
performed and the results are reported in Table 8. The
required number of generations to converge varied between
308 and 984.

We observed that the GA optimized each layer in order
to generate a design which closely satisfies the mass con-
straint while keeping in mind that the objective is to mini-
mize the hot spot temperature. The best design was found
in Sim. # 2 with a eT max ;m value of 6.7051 � 10�4. Com-
pared with the designs optimized without constraints (Sec-
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tion 7), the GA changed the material composition from
copper to aluminum for most layers in order to respect
the mass constraint. We also note that the porosities are
somewhat higher. By respecting the mass constraint, the
thermal performance of the stacking necessarily drops since
freedom to morph is lost due to the constraint. In fact, val-
ues of eT max ;m are almost 20% higher when the mass con-
straint is activated.

Even if the repeatability of the results presented in Table
8 is not as good as the one obtained when no constraint
was considered, the thermal performances of the optimized
designs vary only slightly. The maximal relative variation
of eT max ;m between the four simulations is 2%. In other
words, there are several nearly optimal designs
(robustness).

8.2. Cost constraint

In this section, we do not consider the global mass of the
system, but a requirement for the total cost is specified. We
repeated the same procedure that we described in Section
8.1, with a critical cost of eC0 ¼ 8771:81 which represents
25% of the average cost of the designs obtained without
constraints (Section 7). The new designs that we obtained
are presented in Table 9. As we can see, the generated
designs give almost the same value for eT max (less than 1%
of variation) and the best one is obtained in Sim. # 3 after
854 generations. This time, the porosities are somewhat
smaller (more solid material) and at least one copper-made
layer was attributed in each simulation. Since copper has
the highest thermal conductivity, the closer it is from the
hot plate, the more beneficial it is in terms of cooling. To
be able to attribute the expensive copper-made layer next
to the hot plate in Sim. # 3, the GA assigned one iron-
made layer. The expensive cost of this copper-made layer
must be counterbalanced with the use of a cheaper material
elsewhere in the stacking. Finally, the eT max ;m values
obtained are about 10% higher than the ones obtained
without constraints.

8.3. Combined mass and cost constraints

At this stage, the architecture of the system was opti-
mized under combined mass and cost constraints. The first
case that was considered is the one for which eC0 ¼ 8771:81
(25% of the average cost obtained without constraints) andeM 0 ¼ 500. When only the cost constraint eC0 ¼ 8771:81
was considered (Section 8.2), the lightest design delivered
by the optimization weighs more than 500 (see Table 6).
Therefore, no optimal design can closely satisfy both con-
straints. In Table 10, we reported our results for this partic-
ular case. The required number of generations to converge
varied between 478 and 1105. As predicted, the mass values
closely satisfied the mass constraint (limit of constraint),
but the global costs were far below the constraint. When
we compare Tables 9 and 10, we see that the GA attempted
to replace copper and iron by aluminum in order to satisfy



Table 10
Optimization under combined mass and cost constraints (eC0 ¼ 8771:81 and eM ¼ 500) for Be = 1011, eH ¼ 1 and eD ¼ 0:001

Configuration of layer j  (material and porosity) Required
number of 

generations 1 2 3 4 5 6 7 8 9 10 

      

Simulation
# 1 478 Al

0.669
Al

0.630
Al

0.701
Al

0.732
Al

0.748
Al

0.764
Al

0.827
Al

0.882
Al

0.929
Al

0.976 499.95 4449.5 6.6026 

Simulation
# 2 1105 Al

0.669
Al

0.677
Al

0.693
Al

0.701
Al

0.748
Al

0.795
Al

0.827
Al

0.858
Al

0.929
Al

0.961 499.64 4446.8 6.5963 

Simulation
# 3 748 Al

0.709
Al

0.654
Cu

0.827
Al

0.756
Al

0.803
Al

0.843
Al

0.858
Al

0.906
Al

0.937
Al

0.969 500.02 5778.0 6.7314 

Simulation
# 4 820 Al

0.638
Al

0.669
Al

0.693
Al

0.748
Al

0.724
Al

0.764
Al

0.835
Al

0.874
Al

0.929
Al

0.984 499.48 4445.4 6.6066 

mmax,T
~

C
~

M
~

410×

Table 11
Optimization under combined mass and cost constraints ( eM 0 ¼ 469:07 and eC0 ¼ 1000) for Be = 1011, eH ¼ 1 and eD ¼ 0:001

Configuration of layer j  (material and porosity) Required
number of 

generations 1 2 3 4 5 6 7 8 9 10 

      

Simulation
# 1 994 Al

0.866
Al

0.874
Fe

0.803
Fe

0.843
Al

0.953
Fe

0.874
Al

0.984
Fe

0.984
void

1.000
void

1.000 415.62 998.42 1.0262 

Simulation
# 2 691 Fe

0.677
Fe

0.780
Al

0.866
Al

0.929
Al

0.921
Fe

0.953
Fe

0.992
void

1.000
void

1.000
void

1.000 460.94 990.99 1.0858 

Simulation
# 3 946 Fe

0.677
Al

0.866
Al

0.913
Fe

0.827
Al

0.953
Al

0.969
Fe

0.976
Fe

0.976
void

1.000
void

1.000 436.63 996.13 1.0435 

Simulation
# 4 773 Fe

0.661
Al

0.835
Fe

0.858
Fe

0.890
Al

0.937
Al

0.945
void

1.000
void

1.000
void

1.000
void

1.000 465.46 995.51 1.1254 

mmax,T
~

C
~

M
~

310×
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the constraint on the mass. Since an additional mass con-
straint was added to the initial cost constraint, it is also
normal to observe a drop in the thermal performances
from the designs presented in Table 9 to those presented
in Table 10. In other words, eT max ;m values are higher in
Table 10 because less freedom is given for the system to
morph.

We then considered the following combination of con-
straints: eM 0 was set to 469.07 (25% of the average mass
obtained without constraint) and eC0 was set to 1000 (see
Table 8). When only eM 0 ¼ 469:07 was considered, the
cheapest design was much more expensive than 1000 (see
Table 8). The only way to satisfy the mass constraint was
to attribute several aluminum-made layers to the designs.
In fact, aluminum is by far the lightest material in Table
1, but it is also one of the most expensive. When one com-
bines with this mass constraint a cost constraint as small aseC0 ¼ 1000, one can expect that the use of aluminum would
be detrimental because of its high cost. In Table 11, we
reported the results of the optimization under the new com-
bined constraints eM 0 ¼ 469:07 and eC0 ¼ 1000. To satisfy
the cost constraint, the GA had no choice but to assign
more iron (cheapest material). The best design was found
after 994 generations (Sim. # 1) and possesses four iron-
made layers. Unfortunately, iron is heavy and this is not
desirable in view of the mass constraint.

Interesting to note is that to be able to satisfy both con-
straints at the same time, the GA removed some layers by
attributing them a porosity of 1 (no solid material). In
other words, the GA indirectly optimized the size of the
system as well as the porosity and material of each layer
in order to produce designs that respect both constraints.
The emergence of void layers is a result of optimization
and follows from the competition between the objective
(minimize eT maxÞ and constraints (mass and cost). The ini-
tial height eH can be seen as an additional constraint: the
stacking height has to be smaller (or equal) than eH . The
system is free to morph within this domain, but can reduce
its size if it is required to meet the constraint. In the case
presented in Table 11, between 2 and 4 layers were removed
to respect the constraints.

9. Conclusion

In this paper, we optimized a cooling system made of a
stack of porous layers through which a coolant flows. We
determine the optimal distribution of porosity, i.e., that
we distribute optimally the channel flows and solid
materials.

An innovative aspect is the determination of the materi-
als of each layer. This would have been difficult with the
use of gradient-like optimization methods. Material selec-
tion is an important potential of GA optimization methods
in the field of thermal sciences.

Finally, we optimized the size of the cooling system (or
equivalently, the number of stacked porous layers) as well.
In general, cooling systems are optimized based on a speci-
fied size constraint. When there is a competition between
different objectives, it is possible to dimension the cooling
system. For example, in Ref. [39], the size of an electromag-
net cooling system was optimized based on the competition
between the magnetic and thermal performances. In this
paper, the competition is between the call for a small overall
mass, a small cost and the necessity of a low hot spot tem-
perature, leading to a tradeoff architecture for the cooling
system. Because it is difficult to define a proper value for
the limiting cost C0 or the limiting mass M0 in Eqs. (8)
and (9), an alternative approach would be a multi-objective
optimization [40] of the temperature, mass and cost.

Further research could include a more refined analysis
of the heat and fluid flow in the porous layers. Radiation
effects on the heat transfer within the porous layers could
have been taken into account. The internal structure of
the porous media could have been varied and optimized.
For example, a database of internal porous architectures
(e.g., packed spheres, packed cylinders, straight channels)
and their corresponding permeability–porosity and con-
ductivity–porosity relations could be generated, and the
optimization procedure could select the optimal internal
structure of each layer.
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